Voltage-dependent inactivation gating at the selectivity filter of the MthK K+ channel

نویسندگان

  • Andrew S. Thomson
  • Brad S. Rothberg
چکیده

Voltage-dependent K(+) channels can undergo a gating process known as C-type inactivation, which involves entry into a nonconducting state through conformational changes near the channel's selectivity filter. C-type inactivation may involve movements of transmembrane voltage sensor domains, although the mechanisms underlying this form of inactivation may be heterogeneous and are often unclear. Here, we report on a form of voltage-dependent inactivation gating observed in MthK, a prokaryotic K(+) channel that lacks a canonical voltage sensor and may thus provide a reduced system to inform on mechanism. In single-channel recordings, we observe that Po decreases with depolarization, with a half-maximal voltage of 96 ± 3 mV. This gating is kinetically distinct from blockade by internal Ca(2+) or Ba(2+), suggesting that it may arise from an intrinsic inactivation mechanism. Inactivation gating was shifted toward more positive voltages by increasing external [K(+)] (47 mV per 10-fold increase in [K(+)]), suggesting that K(+) binding at the extracellular side of the channel stabilizes the open-conductive state. The open-conductive state was stabilized by other external cations, and selectivity of the stabilizing site followed the sequence: K(+) ≈ Rb(+) > Cs(+) > Na(+) > Li(+) ≈ NMG(+). Selectivity of the stabilizing site is weaker than that of sites that determine permeability of these ions, suggesting that the site may lie toward the external end of the MthK selectivity filter. We could describe MthK gating over a wide range of positive voltages and external [K(+)] using kinetic schemes in which the open-conductive state is stabilized by K(+) binding to a site that is not deep within the electric field, with the voltage dependence of inactivation arising from both voltage-dependent K(+) dissociation and transitions between nonconducting (inactivated) states. These results provide a quantitative working hypothesis for voltage-dependent, K(+)-sensitive inactivation gating, a property that may be common to other K(+) channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial steps of inactivation at the K+ channel selectivity filter.

K(+) efflux through K(+) channels can be controlled by C-type inactivation, which is thought to arise from a conformational change near the channel's selectivity filter. Inactivation is modulated by ion binding near the selectivity filter; however, the molecular forces that initiate inactivation remain unclear. We probe these driving forces by electrophysiology and molecular simulation of MthK,...

متن کامل

Calcium ions open a selectivity filter gate during activation of the MthK potassium channel

Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K(+) channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca(2+)-activated K(+) channels has remained elusive. Using the Methanobacterium thermoautotrophicum hom...

متن کامل

Where’s the gate? Gating in the deep pore of the BKCa channel

133 C o m m e n t a r y Four -helical segments at the intracellular entrance to the ion conduction pathway splaying open is the conventional imagery of a K + channel opening to allow K + ions and co-traversing water molecules to hop through the channel's pore (Fig. 1) (Armstrong, 2003; Swartz, 2004). This view of K + channel gating—already depicted in numerous textbooks—has been derived largel...

متن کامل

Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicate...

متن کامل

Gating and Inward Rectifying Properties of the MthK K+ Channel with and without the Gating Ring

In MthK, a Ca2+-gated K+ channel from Methanobacterium thermoautotrophicum, eight cytoplasmic RCK domains form an octameric gating ring that controls the intracellular gate of the ion conduction pore. The binding of Ca2+ ions to the RCK domains alters the conformation of the gating ring, thereby opening the gate. In the present study, we examined the Ca2+- and pH-regulated gating and the rectif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2010